708 research outputs found

    Pattern recognition receptors as key players in adrenal gland dysfunction during sepsis

    Get PDF
    Background: Undergoing systemic inflammation, the innate immune system releases excessive proinflammatory mediators, which finally can lead to organ failure. Pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs), form the interface between bacterial and viral toxins and innate immunity. During sepsis, patients with diagnosed adrenal gland insufficiency are at high risk of developing a multiorgan dysfunction syndrome, which dramatically increases the risk of mortality. To date, little is known about the mechanisms leading to adrenal dysfunction under septic conditions. Here, we investigated the sepsis-related activation of the PRRs, cell inflammation, and apoptosis within adrenal glands. Methods: Two sepsis models were performed: the polymicrobial sepsis model (caecal ligation and puncture (CLP)) and the LTA-induced intoxication model. All experiments received institutional approval by the Regierungspräsidium Darmstadt. CLP was performed as previously described [1], wherein one-third of the caecum was ligated and punctured with a 20-gauge needle. For LTA-induced systemic inflammation, TLR2 knockout (TLR2-/-) and WT mice were injected intraperitoneally with pure LTA (pLTA; 1 mg/kg) or PBS for 2 hours. To detect potential direct adrenal dysfunction, mice were additionally injected with adrenocorticotropic hormone (ACTH; 100 μg/kg) 1 hour after pLTA or PBS. Adrenals and plasma samples were taken. Gene expressions in the adrenals (rt-PCR), cytokine release (multiplex assay), and the apoptosis rate (TUNEL assay) within the adrenals were determined. Results: In both models, adrenals showed increased mRNA expression of TLR2 and TLR4, various NLRs, cytokines as well as inflammasome components, NADPH oxidase subunits, and nitric oxide synthases (data not shown). In WT mice, ACTH alone had no effect on inflammation, while pLTA or pLTA/ACTH administration showed increased levels of the cytokines IL-1β, IL-6, and TNFα. TLR2-/- mice indicated no response as expected (Figure 1, left). Interestingly, surviving CLP mice showed no inflammatory adrenal response, whereas nonsurvivors had elevated cytokine levels (Figure 1, right). Additionally, we identified a marked increase in apoptosis of both chromaffin and steroid-producing cells in adrenal glands obtained from mice with sepsis as compared with their controls (Figure 2). ... Conclusion: Taken together, sepsis-induced activation of the PRRs may contribute to adrenal impairment by enhancing tissue inflammation, oxidative stress and culminate in cellular apoptosis, while mortality seems to be associated with adrenal inflammation

    Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis

    Full text link
    Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion

    Is there a role for the adrenal glands in long COVID?

    Full text link
    The symptoms of long COVID and chronic adrenal insufficiency have striking similarities. Therefore, we aim to raise awareness of assessing adrenal function in patients with long COVID

    Cushing's Disease Management: Glimpse Into 2051

    Full text link
    Major advancements are expected in medicine and healthcare in the 21st century- "Digital Age", mainly due to the application of data technologies and artificial intelligence into healthcare. In this perspective article we share a short story depicting the future Cushings' Disease patient and the postulated diagnostic and management approaches. In the discussion, we explain the advances in recent times which makes this future state plausible. We postulate that endocrinology care will be completely reinvented in the Digital Age

    Can liquid biopsies for MASH help increase the penetration of metabolic surgery? A narrative review

    Get PDF
    This narrative review highlights current evidence on non-invasive tests to predict the presence or absence as well as the severity of metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition characterized by fat accumulation in the liver that affects 32 % of the world population. The most severe form of MASLD is MASH in which hepatocyte ballooning and inflammation are present together with steatosis; MASH is often associated with liver fibrosis. MASH diagnosis is determined by invasive liver biopsy. Hence, there is a critical need for non-invasive MASH tests. Plasma biomarkers for MASH diagnosis generally have low sensitivity (62-66 %), and specificity (78-82 %). Monocyte levels of Perilipin2 (PLIN2) predict MASH with an accuracy of 92-93 %, and sensitivity and specificity of 90-95 % and 88-100 %, respectively. This liquid biopsy test can facilitate the study of MASH prevalence in general populations and also monitor the effects of lifestyle, surgical, and pharmacological interventions. Without any FDA-approved MASH therapeutic, and with metabolic surgery markedly surpassing the efficacy of lifestyle modification, an accurate and reliable liquid biopsy could help more people choose surgery as a treatment for MASH

    Stress hormone response to the DEX-CRH test and its relation to psychotherapy outcome in panic disorder patients with and without agoraphobia

    Get PDF
    This study tested whether the hormonal stress response to the DEX-CRH test may be predictive of the psychotherapy success for panic disorder (PD). Thirty-four patients diagnosed either with agoraphobia with PD or PD without agoraphobia were subjected to cognitive behavioural therapy (CBT). Patients (pre-therapy) and healthy volunteers were exposed to the DEX-CRH test. Blood samples were taken for cortisol and adrenocorticotropic hormone (ACTH) assessment. Established panic-specific questionnaires were handed out for the pre-therapy and post-therapy evaluation of disease severity (with reference to panic beliefs and agoraphobic cognitions, fear of bodily sensations, agoraphobic avoidance behaviour). Repeated measures ANCOVA were conducted for the analysis of the pre-therapy hormonal response, and Pearson's correlation analysis to test for associations with the psychotherapy outcome. Data analyses revealed large effect sizes for CBT in the clinical measures (η2 ≥ 0.321), main effects of time for cortisol and ACTH with no differences between both groups, and significant associations between cortisol release and agoraphobic cognitions for the patients. PD diagnosis had no impact on the hormonal response. However, those patients with higher cortisol release showed less improvement after CBT (significantly for agoraphobic cognitions). Clinical implications of these findings are the prediction of the therapy success from a potential endocrine correlate whose persistency (if assessed repeatedly) during the treatment may predict (non-)response to the current treatment, possibly representing a decision support for a change in treatment to avoid the continuation of an inefficient treatment

    Sex-based differences in insulin resistance

    Get PDF
    Sexual dimorphism in energy metabolism is now established and suggested to affect many aspects of metabolic diseases, and -in particular- diabetes, and obesity. This is strongly related to sex-based differences in whole-body insulin resistance. Women are more insulin sensitive compared to men, but this metabolic advantage gradually disappears after menopause or when insulin resistance progresses to hyperglycemia and diabetes. In this narrative review, first, we describe the pathophysiology related to insulin resistance and then we present the epidemiological evidence as well as the important biological factors that play a crucial role in sexual dimorphism in insulin sensitivity. We focus particularly on the differences in body fat and muscle mass distribution and function, in inflammation and in sex hormones between males and females. Most importantly, we describe the significant mechanistic differences in insulin sensitivity as well as glucose and lipid metabolism in key metabolic organs: liver, white adipose tissue and skeletal muscle. Finally, we present the sex-based differences in response to different interventions and discuss important open research questions

    Hypertriglyceridaemia: contemporary management of a neglected cardiovascular risk factor

    Full text link
    Hypertriglyceridaemia represents one of the most prevalent lipid abnormalities, however it is often eclipsed by focus on LDL cholesterol and is frequently overlooked by clinicians, despite it being an important cardiovascular risk factor. For most patients, hypertriglyceridaemia arises from a combination of environmental factors and multiple genetic variations with small effects. Even in cases with apparent familial clustering of hypertriglyceridaemia, a monogenetic cause is rarely identified. Common secondary causes include obesity, uncontrolled diabetes, alcohol, and various commonly used drugs. Correction of these factors, along with lifestyle optimisation, should be prioritised prior to commencing medication. The goal of drug treatment is to reduce the risk of cardiovascular disease in those with moderate hypertriglyceridaemia and the risk of pancreatitis in those with severe hypertriglyceridaemia. Recent and ongoing trials demonstrate the important role of triglycerides (TG) in determining residual risk in patients with cardiovascular disease (CVD) already established on statin therapy. Novel and emerging data on omega-3 fatty acids (high-dose icosapent ethyl) and the selective PPAR modulator pemafibrate are eagerly awaited and may provide further clarity for clinicians in determining which patients will benefit from TG lowering and help inform clinical guidelines. There are numerous novel therapies on the horizon that reduce TG by decreasing the activity of proteins that inhibit lipoprotein lipase such as apolipoprotein C-III (including Volanesorsen which was recently approved in Germany) and ANGPTL 3/4 which may offer promise for the future

    Liver fat as risk factor of hepatic and cardiometabolic diseases

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a disorder characterized by excessive accumulation of fat in the liver that can progress to liver inflammation (non-alcoholic steatohepatitis [NASH]), liver fibrosis, and cirrhosis. Although most efforts for drug development are focusing on the treatment of the latest stages of NAFLD, where significant fibrosis and NASH are present, findings from studies suggest that the amount of liver fat may be an important independent risk factor and/or predictor of development and progression of NAFLD and metabolic diseases. In this review, we first describe the current tools available for quantification of liver fat in humans and then present the clinical and pathophysiological evidence that link liver fat with NAFLD progression as well as with cardiometabolic diseases. Finally, we discuss current pharmacological and non-pharmacological approaches to reduce liver fat and present open questions that have to be addressed in future studies
    • …
    corecore